
LoRaWAN Insecurities
Nico Schottelius & Kamila Součková

● Long range (10km+)
● Low energy (years runtime on a single battery)
● Low bitrate
● Network

○ 868 Mhz
○ Datagram-based (separate packets, usually not ack’d)
○ Network provider separate from application

LoRaWAN

2

● Primary usage: IoT
○ Measurements (temperature, humidity, water / oil level)
○ Status Sensors (water, radioactivity, burglar alarm, parking)
○ Animal tracking
○ Buttons

LoRaWAN

3

Motivation
● New protocol: Lessons learned or mistakes repeated?
● Wireless + Long Range + Energy-efficient = Very Interesting
● Huge Growth + Hype

4

LoRaWAN Architecture

5

6

END USER

NETWORK PROVIDER
(Swisscom, Loriot)

7

END USER

NETWORK PROVIDER
(Swisscom, Loriot)

LoRaWAN Internet

eavesdropping
(>10km range!),
packet insertion

eavesdropping,
packet insertion

LoRaWAN Security Features
● Devices can operate in one of two modes:

8

● Symmetric encryption (AES-128)
○ Messages to network encrypted with NwkSKey, to application with AppSKey

● Replay protection: frame counters
● Integrity protection: AES-based MAC

ABP (activation by personalization)
● Static device address
● Static long term keys

OTAA (over the air activation)
● Device actively joins the network
● Derived short term keys & address

LoRaWAN Security Features

The devil is in the details...

9

Incomplete Standard: Keys
● Nothing about key distribution

○ Symmetric encryption ⇒ key distribution not trivial
○ Some devices come with hard-coded keys and IDs that cannot be changed

● ABP shouldn’t be used in production
○ Keys never change automatically with ABP
○ But some devices only support ABP

10

Ascoel CM868 door sensor:
ABP-only, with hard-coded DevAddr and keys
(fully standard-compliant)

OTAA: JOIN procedure

Incomplete Standard: Network Provider
● Undefined: who generates master keys + IDs?

○ In the real world, it is the network

11

● For OTAA: session keys
○ NwkSKey and AppSKey both derived from

AppKey
○ Computed by the network provider in practice
○ In theory, application could provide keys as a

Service to the network, but nobody does that
○ ⇒ AppSKey known to the network

Replay Attacks
● In theory: frame counter should always increase
● In practice: storing frame counter in non-volatile memory is impractical ⇒ all

network providers allow frame counter resets
○ Replaying frame #0 works
○ ⇒ DoS:

■ Frame counter gap: current - last seen
■ Standard mandates dropping packets if gap too big
■ Replay frame 0, device won’t know a reset occurred ⇒ legit packets will be ignored

● OTAA: Join requests have no replay protection ⇒ DoS

12

● Packet body encrypted (⇒ only length leaked), header in plain text
● Notable header fields:

○ DevAddr: permanent ID for ABP; long-lived and easy to associate for OTAA
■ ⇒ no anonymity

Plain Text Fields
FP

or
t

IR proximity sensor

13

○ FPort: used for message multiplexing inside the application

Information leakage

● radioactivity detectors
● door sensors
● buttons
● remote controls
● parking sensors
● Bluetooth range sensor
● animal tracking

Event-based devices
● Many devices send packet when something happens
● Existence of packet reveals information
● Example “use cases”:

14

Fake plumber attack

● water sensors
● burglar alarms / motion detectors
● smoke detectors

Event-based Devices: Counter-measures
● Do not use the FPort field

○ Also: send fixed-size packets

● Inject random fake packets to hide event timing and total number of events
○ Tradeoff: better hiding of information ⇒ more extra packets ⇒ higher energy consumption

● If not time-critical: bundle events and send at regular intervals

15

LoRaWAN 1.1

Newer == Better ?

16

● Network provider:
○ OTAA: Who generates session keys?

LoRaWAN 1.1 Security: Incomplete Standard

17

● Key distribution: “unique keys” (impossible to enforce)
● aaa

○ How does it interact with application?
■ Providers SHALL use subdomains

under
JOINEUIS.LORA-ALLIANCE.ORG
and NETIDS.LORA-ALLIANCE.ORG
⇒ single point of failure for ALL
LoRaWAN infrastructure: just DDoS
the DNS

END USER

NETWORK
PROVIDER

JOIN
server

● Counter resets forbidden – counters really always increase (mod 216)
● OTAA: JOIN requests have a counter, frame counter starts from 0 each session

○ JOIN counter stored in non-volatile memory – not that often ⇒ okay
○ Frame counters don’t have to be stored

● Frame counter gap definition removed – no counter-related DoS

LoRaWAN 1.1 Security: Replay attacks fixed :-)

18

● FPort still not encrypted :-(

LoRaWAN 1.1 Security: Plain text fields

19

Conclusion
● LoRaWAN

○ Key distribution and derivation
○ Replay attacks and DoS
○ FPort leaks application information

● LoRaWAN 1.1
○ Key distribution: “unique” but no way to enforce
○ Key derivation: defined :-) but complex :-(⇒ actual use is questionable
○ Interaction between network and application: overdefined, with new SPOFs
○ Replay attacks: fixed
○ FPort still leaks application information

● Event based devices
○ Packet presence = information
○ Tradeoff between energy/security

20

Appendix

21

Types of use cases

periodic communication

● sensors: report value of X every
Y seconds

● usual security mechanisms (e.g
encryption) sufficient

event-based

● send packet whenever
something happens

● existence of packet reveals
information

● the event must be masked
somehow

1 2
22

LoRaWAN 1.1: Frame counters
● Resets are forbidden now!
● Solves replay problems
● Unclear: How / where do ABP devices permanently store counter?
● Insecurity: fixed
● Implementation for ABP: unclear

23

LoRaWAN 1.1: Counter gap
● Definition removed
● Fixed: DoS prevented

24

LoRaWAN 1.1: FPort
● Was: Plain text field
● Is: Plain text field
● Problem not fixed :(

25

LoRaWAN 1.1: LoRa Alliance DNS
● Providers SHALL use JOINEUIS.LORA-ALLIANCE.ORG and

NETIDS.LORA-ALLIANCE.ORG
● NEW External single point of failure in backend architecture

26

LoRaWAN 1.1: Gateway communication
● Previously: undefined
● Previous reality: JSON via UDP (no authentication, no confidentiality)

○ Swisscom: IPSec

● New: “via secured IP connections”

27

LoRaWAN 1.1: Backend communication
● Previously: undefined
● New: Symmetric keys usage
● Public key crypto not mentioned
● Conclusion: better, but not optimal

28

LoRaWAN 1.1: Key usage
● Previous: undefined
● New: unique key per device
● Insecurity fixed (?)

○ How to enforce in reality?

29

LoRaWAN 1.1: Key derivation
● Objective: have 2 symmetric keys

○ User data
○ Network commands

● Previous: Network provider has both keys
● New: User could run “join server”
● Insecurity fixed (?)

○ High degree of complexity
○ Very unlikely to happen in reality

30

LoRaWAN 1.1: Overdefinition
● Previous: no backend definition
● New: partially detailed definition

○ HTTP transport, POST-based, JSON

● Questionable improvement

31

● incomplete standard:
○ key distribution
○ network provider not defined:

■ how does it get keys?
■ how does it interact with application?

○ ABP-only devices

● replay attacks:
○ counter resets + frame counter gap ⇒ DoS
○ JOIN replay ⇒ DoS

● plain text fields:
○ permanent-ish device ID; device type might be leaked
○ FPort leaks application information

Conclusion: LoRaWAN Security

32

● incomplete standard:
○ key distribution: “unique keys” (impossible to enforce)
○ network provider:

■ how does it get keys? – defined :-) but complex :-(⇒ actual use is questionable
■ how does it interact with application? – overdefined, with SPOFs :-(

○ ABP devices allowed, but harder to implement

● replay attacks:
○
○

● plain text fields
○ permanent-ish device ID; device type might be leaked
○ FPort still leaks application information

Conclusion: LoRaWAN 1.1 Security

33

fixed :-)

Conclusion: Event-based Devices
● Do not leak more than necessary

○ Do not use FPort…
○ aa
○ aa
○ aa
○ aa
○ aa
○ Hide packet length

● Inject fake packets to hide real events
○ Tradeoff: attacker information gain vs. # of extra packets

● If not time-critical: bundle and send at regular (or random) intervals

34

