
Implementation of a Layer 7
IPv4 to IPv6 Reverse Proxy

Nico Schottelius, Sarah Plocher

Motivation
● IPv4 addresses have run out
● IPv6 is here, today
● Smart mechanism for bridging during transition time
● Need 1:N mappings

IPv4: 32 Bit IPv6: 128 Bit

Real world example
● ipv6onlyhosting.com
● Product of ungleich

glarus ag
● Using ssh jump host,

nginx and haproxy in
various modes

Idea

Real world problems
● No Neighbor discovery protocol

○ Not even plain IPv6 <-> IPv6 communication possible
○ Solution: static neighbor entries

● Sending incorrect packets with scapy
○ Strange mac addresses (“missing layer”)

● (Not) Handling of FIN
○ Socket in use errors

Real world problems (2)
● TCP Checksums

○ Changing seq/ack requires new checksum
○ Scapy does not recalculate by default
○ IPv6 is different than IPv4 (for TCP!!!)

● Buffering / Ordering
○ IPv4 client already sends FIN prior to IPv6 backend established!
○ Need to buffer packets!

The solution

h1
10.0.0.3

h3
2001:db8::1

switch
10.0.0.42
2001:db8::3

Controller

IPv4 connection

IPv6 connection setup

NAT64 in action

Demo notes
● Open up terminals and show

○ h1
■ ip addr
■ ip -6 neigh

○ h3
■ ip addr
■ ip neigh

● Try to ping
○ h3 ping 2001:db8::1 # fails, mention other way also does not work

Demo notes 2: Show NAT64
● Open additional terminals

○ mininet / switch
○ controller
○ mx h1 tcpdump -lni any
○ mx h3 tcpdump -lni any

● Use existing terminal h1
○ echo "OK" | mx h1 socat TCP6-LISTEN:80 -

● Drum rolls
● Use existing terminal h3

○ socat A | socat - TCP:10.0.0.42:80

● Explain that A/B are used to decide where to proxy to

Questions?

