EOF
Eris Onion Forwarding
The secure, peer-to-peer, decentralised
anonymous chat network!

Nico -telmich- Schottelius

June 10, 2010

Wersion 0.6.0

Contents

1 Introduction 7
1.1 Copying 7
1.2 Abstract 7

1.2.1 Hide message sending 8
1.2.2 Hide message content 8
1.2.3 Verify sender L. 8
1.2.4 Hide message receiver 8
1.2.5 Reliable against single user attacks 9
1.2.6 Hide packets in network stream 9
1.2.7 Real world usability 9
1.3 Motivation 10
1.3.1 Current implementations are not secure 10
1.3.2 Create more crypto traffic 10
1.4 The project 10
1.4.1 The three phases 11
1.4.2 Further directions 11
1.5 Conventions 12
1.5.1 Writing convention 12
1.5.2 Abbreviations 12
2 The EOF standard 13
2.1 Introduction 13
2.1.1 Version. 13
2.1.2 Modularsetup.o 13
2.2 Interface description ("‘eofi2any”’) 14
2.2.1 Stdin, stdout and stderr (via pipes) 14
222 Unix Socketso 14
2.2.3 Environment variables 14
2.2.4 Asynchronous bidirectional communication 15
2.3 Paths. 15
2.3.1 EOFi configuration directory 15

3

24
2.5

2.6

2.7

2.8

2.9

CONTENTS

2.3.2 User interface (unix socket) 15
Configuration 16
Basic data types ("*EOFbdt”") 16
25.1 Thezerobyteo 16
25.2 Linefeed. 16
2.5.3 ASCIInumbers 16
2.5.4 Strings in generalo 16
2.5.5 Fixed length strings 16
2.5.6 Variable length strings 16
257 Noise. 17
258 Unused. 17
EOF simple data types ("‘EOFsdt””) 17
2.6.1 EOF commands and command fields (mapping table) . 17
2.6.2 Identification string (id) 18
2.6.3 Size (size) 18
2.6.4 Nick name (nick) 18
2.6.5 Group name (group) 19
2.6.6 Message text (msgtext) 19
2.6.7 Peer address (addr) 19
2.6.8 Keyid, the fingerprint (keyid) 19
EOF packets ("‘EOFpkg”’) 19
2.7.1 Introductiono 19
2.7.2 Commands 20
273 Onions 20
274 Postcards 20
Transport protocols ("‘eofi2tp”’) 20
2.8.1 1000: Send packet 20
2.8.2 1001: Enable listening 21
2.8.3 1002: Stop listening 21
2.8.4 2000: Packet successfully sent 22
2.8.5 2001: Packet not sent L. 22
2.8.6 2002: Received packet 22
2.8.7 2003: Listening 22
The user interface ("‘ui2user”’) L. 23
2.9.1 Minimal philosophy L. 23
2.9.2 Commandsin general 23
2.9.3 Command length 23
294 Sendtext 23
2.9.5 /peer add <nick> <initial addr> <keyid> 23
2.9.6 /peer send <nick> <msgtext..> 24

2.9.7 /peer rename <oldnick> <newnick> 24

CONTENTS 5

2.10

2.11

2.12

2.13

2.9.8 /peer show <nick> 24
299 Jpeerlist. 25
2910 Jexit 25
2911 Jquit 25
2.9.12 Aliases 25
2.9.13 /alias < aliasname > < command... > 25
2.9.14 /msg < nick > <msgtext > 25
2.9.15 /whois <mick > o 26
Interface to the user interface (”‘eofi2ui”’) 26
2.10.1 Ulstartup 26
2.10.2 Connection 26
2.10.3 1100: Acknowledge 26
2.10.4 1101: Failure 27
2.10.5 1102: Exit requested 27
2.10.6 1103: Recieved message 28
2.10.7 1104: List of peers 28
2.10.8 1105: Peer information 29
2.10.9 1106: Peer renamed 29
2.10.102100: Register user interface 30
2.10.112101: Deregister user interface 30
2.10.122102: /peeradd 30
2.10.132103: /peersend 31
2.10.142104: /peer rename 31
2.10.152105: /peer show 32
2.10.162106: /peer list 32
2.10.172199: Jquit 32
Interface to the encryption engine (”‘eofi2crypto”’) 33
2.11.1 Connection 33
2.11.2 1200: Encrypt packet 33
2.11.3 1201: Decrypt packet 33
2.11.4 2200: Encrypted a packet 33
2.11.5 2200: Decrypted a packet 33
EOF crypto packets (7‘3***: onions””) 33
2.12.1 Introductiono 34
2.12.2 Parameterso 34
2.12.3 3000: Drop packet 35
2.12.4 3001: Forward packet 35
2.12.5 3002: Message / drop packet 35
2.12.6 3003: Message / forward packet 35
2.12.7 3004: Acknowledge 35

EOF network packets ("‘postcards”) 35

2.13.1 Routing
2.13.2 Onion packets
2.13.3 Postcard packets

3 Transport protocols
3.1 Introduction
3.2 Examples

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.2.7
3.2.8
3.2.9

3.2.10
3.2.11
3.2.12
3.3 Embedding into EOF
Adding a transport protocol
3.3.2 Using a transport protocol
3.4 Implementations
dummy/c

3.3.1

3.4.1
3.4.2

A Sources

CONTENTS

Chapter 1

Introduction

1.1 Copying

Copy it as you like - send corrections to me.

1.2 Abstract

EOF is a chat protocol that supports secure chatting. Secure chatting con-
sists of the following features:

1.
2.

D.
6.

Nobody, but the intended receiver(s) know(s) that you wrote a message.

Nobody, but the intended receiver(s) can view the message content.

. Nobody, but the intended receiver(s) can verify the source of the mes-

sage being you.

. Nobody, but the intended receiver(s) know(s) who you sent a message

to.
The network must survive attacks of a single attacker.

Hard (if not practilcally impossible) to block chatting.

Additionally, for practical reasons, EOF must support the following chat
features:

1.

2.

Direct chat (”‘message is only seen by one person”’)

Group chat (”‘message is sent to specific group, which may consist of
more than one person”’)

8 CHAPTER 1. INTRODUCTION

1.2.1 Hide message sending

We don’t think it’s possible to hide that you are part of the chat network,
because some heuristics will be developed to detect the chat packets. So we
use a different idea: Every participant of an EOF network will constantly
send chat packets with a pre-defined frequency (for instance every 250 ms).
If you don’t chat, noise is sent.! The noise is also used to defend against
timing analysis. In case you are sending out a message, the message packet
will be added to the queue and sent within the next free time slot.

From outside it can easily be seen, that you are part of the network, but
not, if you sent a message.

1.2.2 Hide message content

We encrypt every message via public-key cryptography[1], so that only the
receiver can decrypt and view the message content.

1.2.3 Verify sender

Before the encrypt the packet, it is signed via public-key cryptography|[1].
Thus only the receiver can verify the message sender.

1.2.4 Hide message receiver

The message packets are always sent indirectly via onion routing[2]. The idea
is taken from the Tor project[3], though EOF uses an enhanced version: EOF
does not know about entry or exit nodes. If you are the intended receiver
you may or may not continue to forward the message, which is defined by
the sender of the message. That said, EOF must use source routing[5].

To support onion routing, the sender of a packet needs to encrypt the
packet multiple times, once for each host that receives the packet. This may
look as follows:

1. Create message (from noise or user input)

2. Create source path

3. Create packet for last peer (”‘pkg-last”’)

4. Create packet for last-1 peer including pkg-last

5. Continue until first peer is reached

'Noise is just random data, see below for a more detailled description of noise.

1.2. ABSTRACT 9

6. Sent packet to first peer

Thus every peer only knows the previous and the next peer.

1.2.5 Reliable against single user attacks

Traditional chat networks depend on one or more central organised servers.
An attacker can stop all communication, if she runs a successful denial of
service ("‘DoS”’) attack against the central systems. To protect against
this, EOF uses a dynamic peer-to-peer network, which works as long as the
minimun number of peers and the destination peer is available. It has no
dependency on a central server.

1.2.6 Hide packets in network stream

As said before, we don’t think it’s possible to hide the participation in the
chat network. To be able to send packets, although an attacker knows about
the participation, EOF embeds all chat packets into other (well known) pro-
tocols (which is knows as steganography[12]). EOF does not implement nor
specify transport protocols itself. The EOF community is urged to implement
them in a creative way: Usage of well-known protocols like TCP[6], HTTP[7],
SMTP[8] or even transmission of packets on avian carriers|9] are encouraged.
The tunneling of EOF packets through those protocols (also know as obfus-
cation) makes it harder to detect and block EOF traffic. If an attacker wants
you to stop sending messages, she has to completly remove you from the
network, because any open protocol may be (ab)used to encapsulate EOF
packets into it.

1.2.7 Real world usability

To be able to be compete with other chat protocols, EOF needs to support
direct and group chat, which is implemented by two different chat destina-
tions:

1. Peers
2. Groups of peers

A peer is just another person (direct chat), a group of peers is the EOF
equivalent of the IRC channel[4]. As there is no central server, groups of peers
are managed by each client, and thus the compositions of group members may
be different on different peers.

10 CHAPTER 1. INTRODUCTION
1.3 Motivation

1.3.1 Current implementations are not secure

There are already many different chat protocols available like
o talk
e IRC
e SILC

Jabber

o 1CQ
e Skype

Only two of those protocols contains mandority encryption (SILC, Skype),
which still lacks many features for secure chatting.? Skype and SILC still de-
pend on a central server architecture. The Skype architecture is not publicly
documentated, the executing binary is encrypted, and the system depends
on a single company, which excluded it from being a secure chat system.

Because SILC depends on a central server architecture, it was also ex-
cluded.

1.3.2 Create more crypto traffic

We also want to convey usage of PGP: currently PGP is quite seldom. Thus
if you use PGP, you may be conspicuous. We try to make PGP encrypted
packets part of the regular internet traffic, like webtraffic is today.

1.4 The project

The project started in 2007 as an idea of leof[11] (a friendly hacker com-
munity). After several meetings it was clear that we need to do some ex-
periements and create phases to structure the development.

2Most of them can be enhanced to use TLS/SSL, but this is not enforced.

1.4. THE PROJECT 11

1.4.1 The three phases

So we divided the project into the three phases
1. FOF-1,
2. EOF-2,

3. EOF-5.

EOF-1: Finding ideas

The first phase was the so called ”‘finding ideas”” phase. We did some tests,
measured packet sizes and did some theorethic calculations on intervals.
There was also some discussion about implementing EOF in a ring struc-
ture, like token ring[?]. The first try to do the first implementation as a
complet modularised version began and stalled after some months of decen-
tral developemnt.

EOF-2: Proof of concept

We are currently working on a prototype in EOF-2. The idea is to get the
basic features working and to attract testers and developers.

EOF-3: The final destination

The idea of EOf-3 is to cleanup all parts of EOF-2 and create a ”‘ready to
be used”’ software package, that may be used by end users. This includes
”*good documentation”’ (this document).

1.4.2 Further directions

After the deployment of EOF-3, there may be more work necessary, like
e Deep analysis of security (by us and foreigners),

e enhance performance,

port to other systems,

adapt to changed environment,

12 CHAPTER 1. INTRODUCTION

1.5 Conventions

1.5.1 Writing convention

There are not many things to take care about, when reading this document:
e SNAME is used to mark an environment variable.
e Parameters enclosed in < and > must be specified to the command.

Parameters enclosed in < and ... > must be specified at least one, but
may be repeated. This is only valid for the last parameter.

Parameters enclosed in [and | can be specified optionally.

FEOF_L_NAME is used to specify a certain length

1.5.2 Abbreviations

As some terms are quite often used, we created some abbreviations:

Table 1.1: List of abbreviations

Abbreviation Meaning
EOF Eris onion forwarding, name of this project
EOFi An EOF implementation
rEOFi The reference EOF implementation (also called ”‘ceothack”’)
EOFs An EOF subsystem
EOFsdt EOF simple data type
FLS Fixed length string

Chapter 2
The EOF standard

This section defines the complete EOF standard. All required operations,
features, protocol specifications, paths, interfaces and environment definition,
etc. are described.

2.1 Introduction

2.1.1 Version

As soon as this standard is usable and the first version of rEOF is released, it
will version number 01 of the standard. Further changes will be documented
in this section. All version numbers are two ASCII digits (see below).

2.1.2 Modular setup

As there are many parts needed to realise such a chat system, the EOF
standard defines a modular setup to be used:

e EOFi is the central EOFi implementation
e EOFi is the central connection point for all other EOF's

This modular design allows different developers to code each EOFs in a
different way (and probably different programming language). A complete
implementation consists of at least:

e FEOF1 - central communication daemon
e Ul - at least one user interface

e TP - at least one transport protocol

13

14 CHAPTER 2. THE EOF STANDARD

2.2 Interface description (”‘eofi2any”’)

This section defines which interfaces EOFi offers to communicate with sub-
systems in general. Each subsystem may use a subset or the full set of
interfaces, which is defined in their respective sections.

2.2.1 Stdin, stdout and stderr (via pipes)

EQOF1 is capable of executing a program and connecting its STDIN, STDOUT
and STDERR to EOFi. The rEOFi uses pipes, but other EOFis may use
different methods.! The three filehandles are used as follows:

Table 2.1: Stdin, stdout, stderr

Name Used for

stdin Commands sent from EOFi
stdout Commands sent from EOFs
stderr | Diagnostic messages sent from EOFs

2.2.2 Unix Sockets

Unix sockets are provided by EOFi to allow external applications to connect
to EOFi.

2.2.3 Environment variables

The following environment variable are either used or set by EOFi and are
available for all EOFs.

$HOME

The home directory of the user. It is required by EOFi to locate the config-
uration directory.

$EOF _HOME

The EOFi configuration directory. If set by before EOFi starts, it will skip
the autodetection of the configuration directory. This variable is exported to
all EOFs.

1See pipe(2) and forkexecpipe() in rEOFi.

2.3. PATHS 15

$EOF_UI_ SOCKET

This variable contains the absolute path to the socket, which should be used
by user interfaces (Uls).

2.2.4 Asynchronous bidirectional communication

Every connection between any EOFs and EOF1 is asynchronous (both sides
can start sending on their own) and bidirectional (both sides can send at the
same time.

Thus every EOFs and EOFi have to implement one (or more) queues to
keep the state of their packet.

To identify an answer to a packet, each packet contains an identification
number, which is chosen by the sender (for more information have a look at
section 2.6.2 on page 18).

2.3 Paths

2.3.1 EOFi configuration directory
Default case

Normally, SHOME is set and $SEOF_HOME is not set. In that case the
configuration directory defaults to $HOME/. ceof.

$HOME is unset

If the environment variable ”*$HOME*” is not set, the directory named .ceof
in the current directory will be used.

$EOF_HOME is set

If the environment variable ”*$EOF_DIR*” is set, its content will be used to
refer to the configuration directory.

2.3.2 User interface (unix socket)

If the environment variable $EOF_UI_SOCKET is set, the user interface
should connect to this unix socket. Otherwise it should connect to the socket
”tui/socket”” below the EOFi configuration directory (see above for rules how
to locate that).

16 CHAPTER 2. THE EOF STANDARD

2.4 Configuration

The configuration of EOF1 is stored in the cconfig[?] format.

2.5 Basic data types ("*EOFbdt”’)

This section specifies the basic datatypes used in EOF.

2.5.1 The zero byte
The zero byte is a byte with the value 0.

2.5.2 Line feed

The line feed, ”“\n”’, was used to terminate data sections, but is DEPRE-
CATED now.

2.5.3 ASCII numbers

ASCII numbers use the decimal string representation of a number (versus
binary representation, which is never used between EOFi and EOFs). ASCII
numbers are often used in a packet header. ASCII numbers are used to specify
the length of the packet (excluding itself).

2.5.4 Strings in general

Strings are transmitted without termination (i.e. no new line, no 0 byte),
but are padded with zero bytes, if shorter than the specified length.

2.5.5 Fixed length strings

Fixed length strings contain exactly the specified number of bytes: A 128-
byte fixed length string consists of at most 128 bytes of text, which is then
not zero terminated! If the text it contains is shorter than the specified
length, it must be padded with zero bytes.

2.5.6 Variable length strings

The EOF protocol currently does not specify any variable length strings. All
strings are fixed length (see above).

2.6. EOF SIMPLE DATA TYPES ("' EOFSDT”’) 17

2.5.7 Noise

There are many situations in which an EOF1i sends out data to the network,
although you did not write a message: In fact, as EOFi always sends packets
in a fixed interval, it needs to have data to encrypt and send.

Noise can be any type of random data. As the current random number
generators are quite expensive, it is recommend to use a huge dictionary, old
messages, logfiles, public emails, etc. for noise input.

2.5.8 Unused

To make life harder for attackers we try to make packets always be more or
less the same size. That results in fields being present in a packet, which are
unsued.

Unused fields should be filled up with noise.

2.6 EOF simple data types (”*EOFsdt”’)

The following sections define the datatypes used in EOF related applications.
The recommened name for use in source code is added in parentheses after
the human understandable name.

2.6.1 EOF commands and command fields (mapping
table)

An EOF command is exactly FOF_L_CMD bytes long (fixed length string)
and contains an ASCII number.

EOF commands are the main method of communication between EOF's
and EOFi.

The command field 0 indicates the direction. The command field 1 indi-
cates the EOF subsystem.

Table 2.2: Command fields

Value Subsystem / Description Ref
ool Message is coming from the EOF implementation

10%** eofi2tp: Transport protocols p20
11%%* eofi2ui: User interface p26
12%% eofi2crypto: Crypto engine p33
13%* eofi2noise: Noise generator p??
2%** | Message is coming from EOF subsystem (internally)

18 CHAPTER 2. THE EOF STANDARD

20%* eofi2tp: Transport protocols p20
21%* eofi2ui: User interface p26
224 eofi2crypto: Crypto engine p33
23%* eofi2noise: Noise generator p??
J*k 1 Message is coming from outside (”‘onion packet”’))

The command fields 2 and 3 are defined by the respective subsystem.

2.6.2 Identification string (id)

To identify a packet, each packet contains an identification string, which is
EOF_L_ID bytes long. It may contain only the following characters:

e A-Z (alphabet in upper case)
e a-z (alphabet in lower case)
e 0-9 (the digits)

e | (exclamation mark)

e - (minus)

The EOFs or EOFi may chose freely any of the 68719476736 possibilities.?
The characters are limited to those characters to allow easy debugging and
to keep the non-binary command layout.

2.6.3 Size (size)

All sizes used in this document are ” ‘symbolic sizes””: The real size is defined
in the attached file "‘eof.h”’. Developers are advised to use the symbolic
name in their programs.

A size is is always represented as an ASCII number found in a fixed length
string of FOF_L_SIZFE bytes.

2.6.4 Nick name (nick)

The peer name is a EOF_L_NICKNAME byte fixed length string. It is only
used internally to give a peer a rememberable name (”‘a nick™). It is never
transmitted over the network.

2(26 + 26 + 10 + 2)5, as long as EOF_L_ID is 6.

2.7. EOF PACKETS ("*EOFPKG”’) 19

2.6.5 Group name (group)
The group name is a FOF_L_GROUP byte fixed length string.

2.6.6 Message text (msgtext)
The message text is a FOF_L_MESSAGE byte fixed length string.

2.6.7 Peer address (addr)

The address of a peer, which is is a EOF_L_ADDRESS byte fixed length
string. Peer addresses are specified as URLSs as defined in RFC3986[10]. For
more information have a look at section 77 on page ?7?.

2.6.8 Keyid, the fingerprint (keyid)

A (PGP) fingerprint® is a EOF_L_KEYID byte fixed length string. It does
not contain any spaces. It can be retrieved by issuing the following gpg-
command:

LC_ALL=C gpg --fingerprint | \
grep "Key fingerprint =" | \
sed -e ’s/.x=//’> -e ’s/ //g’

2.7 EOF packets ("*EOFpkg”’)

2.7.1 Introduction

No packet (including everything) may exceed the size of EOF_L_PKG_MAX.
EOF knows about

e commands: internal plaintext packets.
e onions: multiple times encrypted packets including routing information
e postcards: packets containing transport protocol dependent header

Commands are the innermost packet type and only seen within EOFi and
EOFs. Commands are then bundled into a multi layer onion. Each layer
contains commands after decryption. Onions are put onto a postcard after-
wards and are sent out on the network. Only encrypted packets are sent
out on the network.

3See RFC 2440, 11.2. Key IDs and Fingerprints

20 CHAPTER 2. THE EOF STANDARD

2.7.2 Commands

Command packets are used for the communication inside of EOFi and EOF's
and are described in detail in the following sections:

e eofi2tp, 2.8, page 20
e cofi2ui, 2.10, page 26

e cofi2crypto, 2.11, page 33

2.7.3 Omnions

Onions are sent out on the network and are multiple times encrypted. They
are building the base for the EOF protocol. Onions are described in detail
in chapter 7?7, page ?77.

2.7.4 Postcards

Onions are afterwards encapsulated into the transport protocol specific packet
type and sent out onto the network. Postcards are described in detail in
chapter 2.13, page 35.

2.8 Transport protocols (”‘eofi2tp”’)

Environment variables: CWD for listener URLSs are used as defined in RFC3986(10)].
Transport protocols use EOF command ID 0.

Stateless: source routing, usage of acks.

Unterscheiden zwischen listener und send.

2.8.1 1000: Send packet

Table 2.3: Command 1000 parameters

Parameter Type Description Example
ID EOFsdt: id packet id afdb12
Destination | EOFsdt: addr | complete URL (with ”‘scheme.”’) tcp:127.0.0.3:42
Size EOFsdt: size | Size of message, excluding this header 424242

Message Binary data The message BLOB

2.8. TRANSPORT PROTOCOLS ("*EOFI2TP”’) 21

1000: Example

Added linebreak after some
0 for readability, which are not in the real packet!

1000abfudh127.0.0.3:42\0\0\0\0\0\0\O\O\O\O\O\O\O\O\ONONONONONONONONONONONONONO
\0\0\0\0\0\O\O\O\NO\O\O
\0\0\0\0\0\0\0\O\O\O\ONONONONO\ONONONONONONONONONONONONONONO\ONONONO\O\O
\0\0\0\0\0\0\0\0\0\0\0\0\O\O\O\010\O\O\O\OHEREISDATA

2.8.2 1001: Enable listening

When the listening transport protocol starts up, EOFi sends this command
and waits for an acknowledge (2003, before it marks the listening transport
protocol as enabled.

Table 2.4: Command 1001 parameters

ID EOFsdt: id packet id afdb12
Parameter Type Description Example
Destination | EOFsdt: addr | URL without ”‘scheme:”’ | 127.0.0.3:42

1001: Example

1001afdb12127.0.0.3:42\0\0\0\0\0\0\0\0\0\0O\0O\0O\0\O\O\NO\O\O\ONO\NO\O\O\O\O
\0\0\0\0\0O\O\O\O\NO\ONONONO\O\O
\0\0\0\0\0\0\0\O\O\O\ONONONONO\ONONONONONONONONONONONONONONONONONONO\O\O
\0\0\0\0\0\0\0\0\0\0\0\0\0\O\O\O\O\O\O

2.8.3 1002: Stop listening

This command requests a listening transport protocol to shutdown. It should
free all ressources and exit. After a grace time (maybe seconds, not yet
defined), EOFi will kill the badly behaving transport protocol. listening
transport protocol as enabled.

Table 2.5: Command 1001 parameters

‘ Parameter ‘ Type ‘ Description ‘ Example ‘

1002: Example
1002

22 CHAPTER 2. THE EOF STANDARD

2.8.4 2000: Packet successfully sent

This code is returned by the transport protocol subsystem to EOFi on suc-
cess. After this return code, the transport protocol exits.

Example

2000

2.8.5 2001: Packet not sent

This code is returned by the transport protocol subsystem to the EOF im-
plementation on failure. After this return code, the transport protocol exits.

Example

2001

2.8.6 2002: Received packet

The listening transport protocol received a packet and notifies EOFi.

Table 2.6: Command 2002 parameters

Parameter Type Description Example
Size EOFsdt:size | Excluding the 2002 and this field 42
Message Binary data The message BLOB
Example
200212
RECEIVEDDATA

2.8.7 2003: Listening

This code is returned by the listening transport protocol, as soon as the
listening process is ready to receive data. After that, EOFi can announce
the listening URL to other EOFi.

Example

2003

2.9. THE USER INTERFACE (7‘UI2USER™’) 23

2.9 The user interface (”‘ui2user”’)

This section specifies the appereance of a user interface to the user.

2.9.1 Minimal philosophy

All EOF compliant user interfaces must support the named commands, so
the user can change the UI, but can be sure that this minimal amount of
commands is always available.

Every user interface may add additional input methods or commands.

2.9.2 Commands in general

All commands begin with a ”*/”" as first character (adopted from IRC).

2.9.3 Command length

The user interfaces need only to accept commands up to a length of EOF_L_UI_INPUT.
If the user inputs longer commands, they should be truncated to FOF_L_UI_INPUT
bytes.

2.9.4 Send text

If the entered text does not begin with a ”¢/”’ it should be treated as a
message to the current selected destination (either a peer or group of peers.

2.9.5 /peer add <nick> <initial addr> <keyid>

Add the peer as name to the list of known peers.

Table 2.7: /peer add parameters

Parameter | Type Description Example
Nick EOFsdt Name you identify the peer with telmich

Initial addr | EOFsdt Where we can make the first contact tcp:10.0.42.42:4242
Keyid EOFsdt | The PGP fingerprint of the peers public key | F27987E34EG66...

Example

/peer add telmich tcp:10.0.42.42:4242 F27987E34E7866B2BA39C2FD793EBSFC325251FE

24

CHAPTER 2. THE EOF STANDARD

2.9.6 /peer send <nick> <msgtext...>

Send message msgtext to peer nick.

Table 2.8: /peer send parameters

Parameter | Type Description Example
Nick EOFsdt | Name you identify the peer with telmich
Msgtext EOFsdt The message itself Hallo, wie geht es Dir?

Example

/peer send telmich Hallo, wie

geht es Dir?

2.9.7 /peer rename <oldnick> <newnick>

Renames the peer.

Table 2.9: /peer rename parameters

Parameter | Type

Description

Example

Oldnick EOFsdt

OIld nick name

susi

Newnick EOFsdt

New nick name

heinz

Example

/peer rename susi heinz

2.9.8 /peer show <nick>

Display detailled information about peer.

Table 2.10: /peer rename parameters

Parameter | Type

Description

Example

Nick name | EOFsdt | Nick name as known by EOFi | karl-otto

Example

/peer show karl-otto

2.9. THE USER INTERFACE (7‘UI2USER™’) 25

2.9.9 /peer list

List currently known peers. This command does not accept any parameters.

Example

/peer list

2.9.10 /exit

Request the user interface to exit. It will deregister from EOFi, but EOFi
will continue to run (even with no user interface attached).

Example

/exit

2.9.11 /quit

The UI tells EOFi to quit. The EOFi will tell all EOFs to quit and quits.
Afterwards the UI will also quit.

Example

/quit

2.9.12 Aliases

Aliases may optionally be provided by the UL If an UI provides support for
aliases, it must implement the ”* /alias”’ command.

The following aliases should be provided by default, to aid new users
using EOF.

2.9.13 /alias < aliasname > < command... >

This command should be used to setup aliases.

2.9.14 /msg < nick > < msgtext >

Should be an alias for /peer send <nick> <msgtext>

26 CHAPTER 2. THE EOF STANDARD

2.9.15 /whois < nick >

Should be an alias for /peer show <nick>

2.10 Interface to the user interface (”‘eofi2ui”’)

Y

This section specifies the commands used between the EOFs ”‘user inter-
face”” and EOFi. As the user interface has to translate the user commands
("‘ui2user”’) to eofi2ui commands, the section titles refer to the ui2user and
eofi2ui commands.

2.10.1 UI startup
What todo, when the UI starts. Connect to EOFi. Find out about

e joined group,
e connected marktscheier
e and open queries.

It thus issues the following commands: register, list joined groups, list open
queries, list marktschreier.

2.10.2 Connection

All user interfaces connect to the user interface socket, as specified on page
15, section 2.3.2.

2.10.3 1100: Acknowledge

The is a general acknowledge answer. The request with the same /D as the
packet was successful.

Parameters

Table 2.11: Command 1100 parameters

Parameter Type Description | Example
ID EOFsdt: id packet id afdb12

2.10. INTERFACE TO THE USER INTERFACE (”‘EOFI2UT"’) 27

Example

1100abfudh

2.10.4 1101: Failure

The is a general failure answer. The request with the same ID as the packet
failed. Details are specified in the reason message.

Parameters
Table 2.12: Command 1101 parameters
Parameter Type Description Example
ID EOFsdt: id packet id afdb12
Reason EOFsdt: msgtxt | Why the connection was refused | Too many Uls connected.

If the failed command was ”‘2100”’, EOFi will close the socket afterwards.

Example

1101abfudhSome error\0\0\0\0\0\0\0\0\0\0\0\0\0\0O\0O\O\0O\O\O\O\O\O\O\O\O\O\O
\0\0\0\0\0\0\0\0\0\0\0\0\O\0\0\0O\O\O\O\O\O\O\ONONO\ONO\ONONONONO\O\O\O\O\O
\0\0\0\0\0\0\0\0\0\0\0\0\O\O\O\O\O\ONO\ONONO\ONONONONO\ONONONONONO\ON\O\O\O
\0\0\0\0\0\0\0\0\O

2.10.5 1102: Exit requested

This is a shutdown request to the Ul. After this message EOFi will exit and
there is no communication possible.

Parameters
Table 2.13: Command 1102 parameters
Parameter Type Description | Example
ID EOFsdt: id packet id afdb12
Example

1102abf93a

28 CHAPTER 2. THE EOF STANDARD

2.10.6 1103: Recieved message

This message is issued by EOFi, if a message is received.

Parameters
Table 2.14: Command 1103 parameters
Parameter Type Description Example
ID EOFsdt: id packet id afdb12
nick EOFsdt The sender telmich
msgtext EOFsdt The message | Hallo, mein Freund!
Example

1103abfudhtelmich\0\0\0\0\0\0\0\0\0\0O\0O\0\0\O\O\NO\O\ONONONO\O\ONONONO\ON\O\O
\0\0\0\0\0\0\0\O\O\O\ON\ONONO\NONONONONONONONONONONONONONONO\ONONONONO\ON\ONO
\0\0\0\0\0\0\0O\0\O\O\O\ONONONO\ONONONONONONONONONONONONO\ONONONONO\ON\ONONO
\0\0\0\0\0\0\0\0\0\0OHal1lo!'\0O\O\O\O\O\O\O\ONONONO\NO\ONONONO\NO\ONONONO\ON\ONO
\0\0\0\0\0\0\O\ONO\NO\ONO\O\ONO
\0\0\0\0\0\0\O\O\NO\O\ONO\O\ONO
\0\0\0\0\0\0\0\0\0\O\O\O\O\O\O\O

Possible answers

e None: EOFi does not resend this packet if the UI lost it.

2.10.7 1104: List of peers

This is the answer to command 2106 and thus contains the same ID, as the
2106 request command.

Parameters
Table 2.15: Command 1104 parameters
Parameter Type Description Example
ID EOFsdt: id packet id afdb12
Number of peers (nop) | EOFsdt: size | How many peers follow 20
nop x Peer EOFsdt: nick The nickname telmich

2.10. INTERFACE TO THE USER INTERFACE (”‘EOFI2UT"’) 29

The last field is repeated as many times as specified in number of peers.

2.10.8 1105: Peer information

This is the answer to command 2105 and thus contains the same 1D, as the
2105 request command.

Parameters
Table 2.16: Command 1105 parameters
Parameter Type Description Example
ID EOFsdt: id packet id afdb12
Keyid EOFsdt:keyid | This peers pgp-keyid | 389E5481065EAA253...
Number of addresses (noa) | EOFsdt: size 1
noa x address EOFsdt: addr Adpress of peer tcp:127.0.0.1:4243

The last field is repeated as often, as specified in the number of addresses

field.

2.10.9 1106: Peer renamed

This is the answer to command 2104 and thus contains the same ID, as the
2104 request command. It is sent out to all connected user interfaces.

Parameters
Table 2.17: Command 1106 parameters
Parameter Type Description | Example
1D EOFsdt: id packet id afdb12
Oldnick EOFsdt Old nick name susi
Newnick EOFsdt New nick name heinz

Possible answers

e None

30 CHAPTER 2. THE EOF STANDARD

2.10.10 2100: Register user interface

This must be the first message sent by the Ul If the answer is not 1100, the
UI should close the socket afterwards.

Parameters
Table 2.18: Command 2100 parameters
Parameter Type Description | Example
ID EOFsdt: id packet id afdb12

Possible answers

e 1100

e 1101

2.10.11 2101: Deregister user interface

Parameters

® 1one

Possible answers

® nnone

EOFi will close the connection to the Ul after receiving this message.

2.10.12 2102: /peer add
The UI adds a peer to the list of known peers.

Parameters
Table 2.19: 2102: /peer add parameters
Parameter Type Description Example
ID EOFsdt: id packet id afdb12
Nick EOFsdt: nick Name you identify the peer with telmich
Address EOFsdt: addr | Where we can make the first contact | tcp:10.0.42.42:4242
Keyid EOFsdt: keyid PGP fingerprint of the peers key F27987E34EG6G...

2.10. INTERFACE TO THE USER INTERFACE (”‘EOFI2UT"’) 31

Possible answers

e 1100

e 1101

2.10.13 2103: /peer send

The UI wants to submit a message to a peer.

Parameters
Table 2.20: 2103: /peer send parameters
Parameter Type Description Example
ID EOFsdt: id packet id afdb12
Nick EOFsdt: nick | Name you identify the peer with telmich
Message EOFsdt: msgtxt The message itself Hallo, wie geht es Dir?

Possible answers

e 1100

e 1101

2.10.14 2104: /peer rename

The UI wants to rename a peer.

Parameters
Table 2.21: /peer rename parameters
Parameter Type Description | Example
ID EOFsdt: id packet id afdb12
Oldnick EOFsdt Old nick name susi
Newnick EOFsdt New nick name heinz

Possible answers
e 1106
e 1101

32 CHAPTER 2. THE EOF STANDARD

2.10.15 2105: /peer show
The UI requests details about a peer.

Parameters
Table 2.22: 2105: /peer show parameters
Parameter Type Description Example
ID EOFsdt: id packet id afdb12
Nick name EOFsdt | Nick name, as known by EOFi | karl-otto
Possible answers
e 1101
e 1105
2.10.16 2106: /peer list
The Ul requests the list of known peers.
Parameters
Table 2.23: 2106: /peer list parameters
Parameter Type Description | Example
ID EOFsdt: id packet id afdb12

Possible answers

e 1101
e 1104

2.10.17 2199: /quit

The user interface requests EOFi and all other EOF's to exit. The EOFi will

not answer, but send an exit request to all other EOFs.

Parameters

2.11. INTERFACE TO THE ENCRYPTION ENGINE (' EOFI2CRYPTO”’)33

Table 2.24: 2199: /quit parameters

Parameter Type Description | Example
ID EOFsdt: id packet id afdb12

Possible answers

® none

2.11 Interface to the encryption engine (”‘eofi2crypto”’)

2.11.1 Connection

The crypto engine is started by EOFi at startup and communicates with
EOFi through stdin and stdout.

2.11.2 1200: Encrypt packet

Passes the following information to the crypto:
e GPG-Fingerprint of the peer (40 Bytes char array) (fpr)
e Adress of the peer (128 Bytes, 0 padded, 0 terminated) (address)
e The length of the message (uint32-t) (msg_-len)

e The message (msg)

2.11.3 1201: Decrypt packet

2.11.4 2200: Encrypted a packet
e The length of the packet (uint32_t) (pck_len)

e The packet (pck)

2.11.5 2200: Decrypted a packet
2.12 EOF crypto packets (”¢3***: onions”’)

Onions are the result of decrypting an incoming packet (respective vice versa
when sending out).

34

2.12.1

CHAPTER 2.

Introduction

The following types are defined:

3000:
3001:
3002:
3003:
3004:

Drop packet

Forward packet

Message / drop packet
Message / forward packet

Acknowledge

2.12.2 Parameters

THE EOF STANDARD

All 3*** packets have the same length and contain the same fields:

Table 2.25: Command 3*** parameters

Command | id | addr | group | msgtext

3000 - - - -

3001 - X - -

3002 X - X X

3003 X X X X

3004 X - - -
e —: Not used
e x: Used

Table 2.26: Command 3*** parameters
Parameter | Type Description Example
id EOFsdt Packet id alg4f!
addr EOFsdt Adress of next peer | tcp:123.123.123.132:8080

group

EOFsdt | The destination group

leof

msgtext

EOFsdt The message

Hallo, mein Freund!

2.13. EOF NETWORK PACKETS (”'POSTCARDS”’) 35

2.12.3 3000: Drop packet

You are the last recipient and there’s nothing interesting left. Just drop the
packet and continue work.

2.12.4 3001: Forward packet

If a peer receives a packet with the command 3001, it simply forwards the
message to the peer specified in the addr field. All data contained in the
message is noise. After the message has been forwarded to the next peer, it
should be dropped. If the peer is unreachable, the message should also be
dropped.

2.12.5 3002: Message / drop packet

This packet contains a messages to be read and does not need to be forwarded
anymore: You are the last peer in the chain.

e If the first byte of the group is the zero byte, the message is a private
message (i.e. only sent to you).

e [f the first byte of the group field is non-zero the message is addressed
to the specified group.

2.12.6 3003: Message / forward packet

The command 3002 is a combination of command 3001 and 3002.

2.12.7 3004: Acknowledge

Acknowledge the receipt of a received message. The ID must be the same
as the one specified in the original messages packet. Every message packet
must be acknowledged.

2.13 EOF network packets (”‘postcards”’)

All data that is transferred over the network must be encrypted. The EOF
packets described in the previous section are multiple times encrypted and
assembled according to the calculated source route. These packets are code-
named ”‘postcards”’, as it is assumed they can be read by an attacker.

29

36 CHAPTER 2. THE EOF STANDARD

2.13.1 Routing

This version of EOF does not know how to create a route. All packages are
transferred directly to the final peer (which is an incredible big huge bug) in
this version of EOF. Source routing will be described and defined in future
versions.

2.13.2 Omnion packets

An onion packet is a (multiple times) encrypted packet. An onion packet
contains at least one plaintext packet, but can also contain already encrypted
packets. It may look like as follows:

Example onion packet

2.13.3 Postcard packets

¢

A postcard " ‘packet”’ contains one onion packet plus the transport protocol
shell. Postcard packets are the only packet type that is seen by a possible
attacker. The name postcard was choosen to reflect the fact, that anyone
passing the postcard can read what is written on it.

All packets must be signed by the sender and encrypted for the receiver.
The different datatypes are just concatenated in the order described. The fol-
lowing description of the content describes the pakckets in their unencrypted
form.

Chapter 3

Transport protocols

3.1 Introduction

Only lower-case names are allowed (to prevent problems with broken filesys-
tems).

3.2 Examples

This sections shows some theoretic (theoretic because nobody implemented
them yet) transport protocols.

3.2.1 tcp
3.2.2 tcps
3.2.3 udp
3.2.4 http
3.2.5 https
3.2.6 smtp

connect to smtp server

3.2.7 smtps
3.2.8 mediawiki

url, user, password

37

38 CHAPTER 3. TRANSPORT PROTOCOLS

3.2.9 smb

write on windows shares

3.2.10 mailto

Write an email to some address. Needs smtp-server set in configuration. May
have different methods for retrieval (like connecting to imap,pop, read from
mbox/maildir directly).

Example URLSs

mailto:nico-eof@eof.eof .name

3.2.11 dns

Use dns traffic to transport EOF protocols.

3.2.12 media

like images, videos, sounds, real noise, spam, ...

3.3 Embedding into EOF

This section explains how to integrate a transport protocol into EOF.

3.3.1 Adding a transport protocol

If you want to add the transport protocol tptest:
e Create the directories
— $HOME/.ceof/tp/available/ tptest.
e Create (link or copy) the executables to the filenames listen and send.

The EOF implementation will register the transport protocol automatically
at the next start. You may register only the listen or send part of a protocol.

3.4. IMPLEMENTATIONS 39

3.3.2 Using a transport protocol

So far the EOF implementation knows about the implementation, and may
also already use it for sending packets. But there is no listener configured yet.
To enable a listener for the protocol tptest at the URL tptest:somewhere@protocol-

specific
e create a directory below
— $HOME/ .ceof/tp/enabled/
e with a name of your choice (f.i. tptest-somwhere or http-80).
e Then add the URL to the file named < url >.

e [f the transport protocol needs or allows additional configuration files,
you need to create them in that directory.

The EOF implementation will parse the URL and check whether a supporting
listener application is available.

Will do chdir() to the directory! tp can open config files in current dir.
what about url?

same for listen and send? listenurl, sendurl, config in curdir Yes!

The maximum length of the URL is defined in eof.h (EOF_L_ADDRESS).
If it is longer, it will be truncated after EOF_L_ADDRESS bytes.

IMPORTANT!

3.4 Implementations

The following sections cover existent protocol implementations. The name
of the section is the name of the registered implementation. Every section
must at least contain:

e Supported scheme

Author contact information

e URL of website
e Programming language

e EOF-Version that introduces support for the protocol

9

You should add your implementation to the directory ”‘tp”’ within the repos-

itory. Sort sections by alphabet.

40 CHAPTER 3. TRANSPORT PROTOCOLS

3.4.1 dummy/c

o dummy

e Nico Schottelius [nico-eof-tp-dummy-c =at= schottelius.org]

https://www.eof name
o C

Version: 1

3.4.2 tcp-apic
e tcp
e A. Pic
o ”
e C

Version: 1

Appendix A

Sources

41

42

APPENDIX A. SOURCES

Bibliography

[1] http://en.wikipedia.org/wiki/Public-key_cryptography
2] http://en.wikipedia.org/wiki/Onion_routing

[3] https://wiki.torproject.org/noreply/TheOnionRouter
[4] RFC 1459: http://www.irchelp.org/irchelp /rfc/rfc.html
[5] http://en.wikipedia.org/wiki/Source_routing

(6] RFC 793: http://www.fags.org/rfcs/rfc793.html

[7] RFC 2616: http://www.fags.org/rfcs/rfc2616.html

(8] RFC 2821: http://www.fags.org/rfes/rfc2821.html

9] RFC 1149: http://www.fags.org/rfes/rfc1149.html
[10] RFC 3986: http://www.fags.org/rfcs/rfc3986.html
[11] https://www.cof.name

[12] http://en.wikipedia.org/wiki/Steganography

43

