Andersson Tree Python module.
anderssontree | ||
tests | ||
LICENSE | ||
README.rst | ||
setup.py |
AATree Package =================== Abstract ======== This package provides Andersson Tree implementation written in pure Python. Sources of Algorithms --------------------- http://en.wikipedia.org/wiki/Andersson_tree http://user.it.uu.se/~arnea/abs/simp.html http://eternallyconfuzzled.com/tuts/datastructures/jsw_tut_andersson.aspx Some concepts are inspired by bintrees package at http://bitbucket.org/mozman/bintrees, although this implementation does not support dict, heap, set compatibility. Constructor ~~~~~~~~~~~ * AnderssonTree() -> new empty tree; * AnderssonTree(mapping) -> new tree initialized from a mapping (requires only an items() method) * AnderssonTree(seq) -> new tree initialized from seq [(k1, v1), (k2, v2), ... (kn, vn)] Methods ~~~~~~~ * __contains__(k) -> True if T has a key k, else False * __delitem__(y) <==> del T[y] * __getitem__(y) <==> T[y] * __iter__() <==> iter(T) <==> keys() * __len__() <==> len(T) * __repr__() <==> repr(T) * __reversed__() <==> reversed(T), reversed keys * __setitem__(k, v) <==> T[k] = v * __copy__() <==> copy() * clear() -> None, remove all items from T * copy() -> a shallow copy of T, tree structure, i.e. key insertion order is preserved * dump([order]) -> None, dumps tree according to order * get(k) -> T[k] if k in T, else None * insert(k, v) -> None, insert node with key k and value v, replace value if key exists * is_empty() -> True if len(T) == 0 * iter_items([, reverse]) -> generator for (k, v) items of T * keys([reverse]) -> generator for keys of T * remove(key) -> None, remove item by key * remove_items(keys) -> None, remove items by keys * root() -> root node * traverse(f, [order]) -> visit all nodes of tree according to order and call f(node) for each node * update(E) -> None. Update T from dict/iterable E * values([reverse]) -> generator for values of T Order values ~~~~~~~~~~~~ * ORDER_INFIX_LEFT_RIGHT - infix order, left child first, then right * ORDER_INFIX_RIGHT_LEFT - infix order, right child first, then left * ORDER_PREFIX_LEFT_RIGHT - prefix order, left child first, then right * ORDER_PREFIX_RIGHT_LEFT - prefix order, right child first, then left * ORDER_POSTFIX_LEFT_RIGHT - postfix order, left child first, then right * ORDER_POSTFIX_RIGHT_LEFT - postfix order, right child first, then left Installation ============ from source:: python setup.py install or from PyPI:: pip install anderssontree Documentation ============= this README.rst, code itself, docstrings bintrees can be found on github.com at: https://github.com/darko-poljak/andersontree Tested With =========== Python2.7.5, Python3.3.2