704 lines
19 KiB
TypeScript
704 lines
19 KiB
TypeScript
import { SpringRef, TransitionFn, useTransition } from "@react-spring/web";
|
||
import { EventTypes, Handler, useScroll } from "@use-gesture/react";
|
||
import React, {
|
||
FC,
|
||
ReactNode,
|
||
useEffect,
|
||
useMemo,
|
||
useRef,
|
||
useState,
|
||
} from "react";
|
||
import useMeasure from "react-use-measure";
|
||
import styles from "./NewVideoGrid.module.css";
|
||
import { TileDescriptor } from "./TileDescriptor";
|
||
import { VideoGridProps as Props } from "./VideoGrid";
|
||
import { useReactiveState } from "../useReactiveState";
|
||
import TinyQueue from "tinyqueue";
|
||
import { zipWith } from "lodash";
|
||
import { useMergedRefs } from "../useMergedRefs";
|
||
|
||
interface Cell {
|
||
/**
|
||
* The item held by the slot containing this cell.
|
||
*/
|
||
item: TileDescriptor;
|
||
/**
|
||
* Whether this cell is the first cell of the containing slot.
|
||
*/
|
||
// TODO: Rename to 'start'?
|
||
slot: boolean;
|
||
/**
|
||
* The width, in columns, of the containing slot.
|
||
*/
|
||
columns: number;
|
||
/**
|
||
* The height, in rows, of the containing slot.
|
||
*/
|
||
rows: number;
|
||
}
|
||
|
||
interface Grid {
|
||
generation: number;
|
||
columns: number;
|
||
cells: (Cell | undefined)[];
|
||
}
|
||
|
||
interface Rect {
|
||
x: number;
|
||
y: number;
|
||
width: number;
|
||
height: number;
|
||
}
|
||
|
||
interface Tile extends Rect {
|
||
item: TileDescriptor;
|
||
}
|
||
|
||
interface TileSpring {
|
||
opacity: number;
|
||
scale: number;
|
||
shadow: number;
|
||
zIndex: number;
|
||
x: number;
|
||
y: number;
|
||
width: number;
|
||
height: number;
|
||
}
|
||
|
||
interface DragState {
|
||
tileId: string;
|
||
tileX: number;
|
||
tileY: number;
|
||
cursorX: number;
|
||
cursorY: number;
|
||
}
|
||
|
||
const dijkstra = (g: Grid): number[] => {
|
||
const end = findLast1By1Index(g) ?? 0;
|
||
const endRow = row(end, g);
|
||
const endColumn = column(end, g);
|
||
|
||
const distances = new Array<number>(end + 1).fill(Infinity);
|
||
distances[end] = 0;
|
||
const edges = new Array<number | undefined>(end).fill(undefined);
|
||
const heap = new TinyQueue([end], (i) => distances[i]);
|
||
|
||
const visit = (curr: number, via: number) => {
|
||
const viaCell = g.cells[via];
|
||
const viaLargeSlot =
|
||
viaCell !== undefined && (viaCell.rows > 1 || viaCell.columns > 1);
|
||
const distanceVia = distances[via] + (viaLargeSlot ? 4 : 1);
|
||
|
||
if (distanceVia < distances[curr]) {
|
||
distances[curr] = distanceVia;
|
||
edges[curr] = via;
|
||
heap.push(curr);
|
||
}
|
||
};
|
||
|
||
while (heap.length > 0) {
|
||
const via = heap.pop()!;
|
||
const viaRow = row(via, g);
|
||
const viaColumn = column(via, g);
|
||
|
||
if (viaRow > 0) visit(via - g.columns, via);
|
||
if (viaColumn > 0) visit(via - 1, via);
|
||
if (viaColumn < (viaRow === endRow ? endColumn : g.columns - 1))
|
||
visit(via + 1, via);
|
||
if (
|
||
viaRow < endRow - 1 ||
|
||
(viaRow === endRow - 1 && viaColumn <= endColumn)
|
||
)
|
||
visit(via + g.columns, via);
|
||
}
|
||
|
||
return edges as number[];
|
||
};
|
||
|
||
const findLastIndex = <T,>(
|
||
array: T[],
|
||
predicate: (item: T) => boolean
|
||
): number | null => {
|
||
for (let i = array.length - 1; i > 0; i--) {
|
||
if (predicate(array[i])) return i;
|
||
}
|
||
|
||
return null;
|
||
};
|
||
|
||
const findLast1By1Index = (g: Grid): number | null =>
|
||
findLastIndex(g.cells, (c) => c?.rows === 1 && c?.columns === 1);
|
||
|
||
const row = (index: number, g: Grid): number => Math.floor(index / g.columns);
|
||
const column = (index: number, g: Grid): number => index % g.columns;
|
||
|
||
const inArea = (
|
||
index: number,
|
||
start: number,
|
||
end: number,
|
||
g: Grid
|
||
): boolean => {
|
||
const indexColumn = column(index, g);
|
||
const indexRow = row(index, g);
|
||
return (
|
||
indexRow >= row(start, g) &&
|
||
indexRow <= row(end, g) &&
|
||
indexColumn >= column(start, g) &&
|
||
indexColumn <= column(end, g)
|
||
);
|
||
};
|
||
|
||
function* cellsInArea(
|
||
start: number,
|
||
end: number,
|
||
g: Grid
|
||
): Generator<number, void, unknown> {
|
||
const startColumn = column(start, g);
|
||
const endColumn = column(end, g);
|
||
for (
|
||
let i = start;
|
||
i <= end;
|
||
i =
|
||
column(i, g) === endColumn
|
||
? i + g.columns + startColumn - endColumn
|
||
: i + 1
|
||
)
|
||
yield i;
|
||
}
|
||
|
||
const forEachCellInArea = (
|
||
start: number,
|
||
end: number,
|
||
g: Grid,
|
||
fn: (c: Cell | undefined, i: number) => void
|
||
) => {
|
||
for (const i of cellsInArea(start, end, g)) fn(g.cells[i], i);
|
||
};
|
||
|
||
const allCellsInArea = (
|
||
start: number,
|
||
end: number,
|
||
g: Grid,
|
||
fn: (c: Cell | undefined, i: number) => boolean
|
||
) => {
|
||
for (const i of cellsInArea(start, end, g)) {
|
||
if (!fn(g.cells[i], i)) return false;
|
||
}
|
||
|
||
return true;
|
||
};
|
||
|
||
const areaEnd = (
|
||
start: number,
|
||
columns: number,
|
||
rows: number,
|
||
g: Grid
|
||
): number => start + columns - 1 + g.columns * (rows - 1);
|
||
|
||
/**
|
||
* Gets the index of the next gap in the grid that should be backfilled by 1×1
|
||
* tiles.
|
||
*/
|
||
const getNextGap = (g: Grid): number | null => {
|
||
const last1By1Index = findLast1By1Index(g);
|
||
if (last1By1Index === null) return null;
|
||
|
||
for (let i = 0; i < last1By1Index; i++) {
|
||
// To make the backfilling process look natural when there are multiple
|
||
// gaps, we actually scan each row from right to left
|
||
const j =
|
||
(row(i, g) === row(last1By1Index, g)
|
||
? last1By1Index
|
||
: (row(i, g) + 1) * g.columns) -
|
||
1 -
|
||
column(i, g);
|
||
|
||
if (g.cells[j] === undefined) return j;
|
||
}
|
||
|
||
return null;
|
||
};
|
||
|
||
const fillGaps = (g: Grid): Grid => {
|
||
const result: Grid = { ...g, cells: [...g.cells] };
|
||
let gap = getNextGap(result);
|
||
|
||
if (gap !== null) {
|
||
const pathToEnd = dijkstra(result);
|
||
|
||
do {
|
||
let filled = false;
|
||
let to = gap;
|
||
let from: number | undefined = pathToEnd[gap];
|
||
|
||
// First, attempt to fill the gap by moving 1×1 tiles backwards from the
|
||
// end of the grid along a set path
|
||
while (from !== undefined) {
|
||
const toCell = result.cells[to];
|
||
const fromCell = result.cells[from];
|
||
|
||
// Skip over large tiles
|
||
if (toCell !== undefined) {
|
||
to = pathToEnd[to];
|
||
// Skip over large tiles. Also, we might run into gaps along the path
|
||
// created during the filling of previous gaps. Skip over those too;
|
||
// they'll be picked up on the next iteration of the outer loop.
|
||
} else if (
|
||
fromCell === undefined ||
|
||
fromCell.rows > 1 ||
|
||
fromCell.columns > 1
|
||
) {
|
||
from = pathToEnd[from];
|
||
} else {
|
||
result.cells[to] = result.cells[from];
|
||
result.cells[from] = undefined;
|
||
filled = true;
|
||
to = pathToEnd[to];
|
||
from = pathToEnd[from];
|
||
}
|
||
}
|
||
|
||
// In case the path approach failed, fall back to taking the very last 1×1
|
||
// tile, and just dropping it into place
|
||
if (!filled) {
|
||
const last1By1Index = findLast1By1Index(result)!;
|
||
result.cells[gap] = result.cells[last1By1Index];
|
||
result.cells[last1By1Index] = undefined;
|
||
}
|
||
|
||
gap = getNextGap(result);
|
||
} while (gap !== null);
|
||
}
|
||
|
||
// TODO: If there are any large tiles on the last row, shuffle them back
|
||
// upwards into a full row
|
||
|
||
// Shrink the array to remove trailing gaps
|
||
const finalLength =
|
||
(findLastIndex(result.cells, (c) => c !== undefined) ?? -1) + 1;
|
||
if (finalLength < result.cells.length)
|
||
result.cells = result.cells.slice(0, finalLength);
|
||
|
||
return result;
|
||
};
|
||
|
||
const cycleTileSize = (tileId: string, g: Grid): Grid => {
|
||
const from = g.cells.findIndex((c) => c?.item.id === tileId);
|
||
if (from === -1) return g; // Tile removed, no change
|
||
const fromWidth = g.cells[from]!.columns;
|
||
const fromHeight = g.cells[from]!.rows;
|
||
const fromEnd = areaEnd(from, fromWidth, fromHeight, g);
|
||
|
||
const [toWidth, toHeight] =
|
||
fromWidth === 1 && fromHeight === 1 ? [3, 2] : [1, 1];
|
||
const newRows = Math.max(
|
||
0,
|
||
Math.ceil((toWidth * toHeight - fromWidth * fromHeight) / g.columns)
|
||
);
|
||
|
||
const candidateWidth = toWidth;
|
||
const candidateHeight = toHeight - newRows;
|
||
|
||
const gappyGrid: Grid = {
|
||
...g,
|
||
generation: g.generation + 1,
|
||
cells: new Array(g.cells.length + newRows * g.columns),
|
||
};
|
||
|
||
const nextScanLocations = new Set<number>([from]);
|
||
const scanColumnOffset = Math.floor((toWidth - 1) / 2);
|
||
const scanRowOffset = Math.floor((toHeight - 1) / 2);
|
||
let to: number | null = null;
|
||
|
||
const displaceable = (c: Cell | undefined, i: number): boolean =>
|
||
c === undefined ||
|
||
(c.columns === 1 && c.rows === 1) ||
|
||
inArea(i, from, fromEnd, g);
|
||
|
||
for (const scanLocation of nextScanLocations) {
|
||
const start = scanLocation - scanColumnOffset - g.columns * scanRowOffset;
|
||
const end = areaEnd(start, candidateWidth, candidateHeight, g);
|
||
const startColumn = column(start, g);
|
||
const endColumn = column(end, g);
|
||
|
||
if (
|
||
start >= 0 &&
|
||
end < gappyGrid.cells.length &&
|
||
endColumn - startColumn + 1 === candidateWidth
|
||
) {
|
||
if (allCellsInArea(start, end, g, displaceable)) {
|
||
to = start;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (startColumn > 0) nextScanLocations.add(scanLocation - 1);
|
||
if (endColumn < g.columns - 1) nextScanLocations.add(scanLocation + 1);
|
||
nextScanLocations.add(scanLocation - g.columns);
|
||
nextScanLocations.add(scanLocation + g.columns);
|
||
}
|
||
|
||
// TODO: Don't give up on placing the tile yet
|
||
if (to === null) return g;
|
||
|
||
const toRow = row(to, g);
|
||
|
||
g.cells.forEach((c, src) => {
|
||
if (c?.slot && c.item.id !== tileId) {
|
||
const offset =
|
||
row(src, g) > toRow + candidateHeight - 1 ? g.columns * newRows : 0;
|
||
forEachCellInArea(src, areaEnd(src, c.columns, c.rows, g), g, (c, i) => {
|
||
gappyGrid.cells[i + offset] = c;
|
||
});
|
||
}
|
||
});
|
||
|
||
const displacedTiles: Cell[] = [];
|
||
const toEnd = areaEnd(to, toWidth, toHeight, g);
|
||
forEachCellInArea(to, toEnd, gappyGrid, (c, i) => {
|
||
if (c !== undefined) displacedTiles.push(c);
|
||
gappyGrid.cells[i] = {
|
||
item: g.cells[from]!.item,
|
||
slot: i === to,
|
||
columns: toWidth,
|
||
rows: toHeight,
|
||
};
|
||
});
|
||
|
||
for (let i = 0; displacedTiles.length > 0; i++) {
|
||
if (gappyGrid.cells[i] === undefined)
|
||
gappyGrid.cells[i] = displacedTiles.shift();
|
||
}
|
||
|
||
return fillGaps(gappyGrid);
|
||
};
|
||
|
||
export const NewVideoGrid: FC<Props> = ({
|
||
items,
|
||
disableAnimations,
|
||
children,
|
||
}) => {
|
||
const [slotGrid, setSlotGrid] = useState<HTMLDivElement | null>(null);
|
||
const [slotGridGeneration, setSlotGridGeneration] = useState(0);
|
||
|
||
const [gridRef1, gridBounds] = useMeasure();
|
||
const gridRef2 = useRef<HTMLDivElement | null>(null);
|
||
const gridRef = useMergedRefs(gridRef1, gridRef2);
|
||
|
||
useEffect(() => {
|
||
if (slotGrid !== null) {
|
||
setSlotGridGeneration(
|
||
parseInt(slotGrid.getAttribute("data-generation")!)
|
||
);
|
||
|
||
const observer = new MutationObserver((mutations) => {
|
||
if (mutations.some((m) => m.type === "attributes")) {
|
||
setSlotGridGeneration(
|
||
parseInt(slotGrid.getAttribute("data-generation")!)
|
||
);
|
||
}
|
||
});
|
||
|
||
observer.observe(slotGrid, { attributes: true });
|
||
return () => observer.disconnect();
|
||
}
|
||
}, [slotGrid, setSlotGridGeneration]);
|
||
|
||
const slotRects = useMemo(() => {
|
||
if (slotGrid === null) return [];
|
||
|
||
const slots = slotGrid.getElementsByClassName(styles.slot);
|
||
const rects = new Array<Rect>(slots.length);
|
||
for (let i = 0; i < slots.length; i++) {
|
||
const slot = slots[i] as HTMLElement;
|
||
rects[i] = {
|
||
x: slot.offsetLeft,
|
||
y: slot.offsetTop,
|
||
width: slot.offsetWidth,
|
||
height: slot.offsetHeight,
|
||
};
|
||
}
|
||
|
||
return rects;
|
||
}, [items, slotGridGeneration, slotGrid, gridBounds]);
|
||
|
||
const [grid, setGrid] = useReactiveState<Grid>(
|
||
(prevGrid = { generation: 0, columns: 6, cells: [] }) => {
|
||
// Step 1: Update tiles that still exist, and remove tiles that have left
|
||
// the grid
|
||
const itemsById = new Map(items.map((i) => [i.id, i]));
|
||
const grid1: Grid = {
|
||
...prevGrid,
|
||
generation: prevGrid.generation + 1,
|
||
cells: prevGrid.cells.map((c) => {
|
||
if (c === undefined) return undefined;
|
||
const item = itemsById.get(c.item.id);
|
||
return item === undefined ? undefined : { ...c, item };
|
||
}),
|
||
};
|
||
|
||
// Step 2: Backfill gaps left behind by removed tiles
|
||
const grid2 = fillGaps(grid1);
|
||
|
||
// Step 3: Add new tiles to the end of the grid
|
||
const existingItemIds = new Set(
|
||
grid2.cells.filter((c) => c !== undefined).map((c) => c!.item.id)
|
||
);
|
||
const newItems = items.filter((i) => !existingItemIds.has(i.id));
|
||
const grid3: Grid = {
|
||
...grid2,
|
||
cells: [
|
||
...grid2.cells,
|
||
...newItems.map((i) => ({
|
||
item: i,
|
||
slot: true,
|
||
columns: 1,
|
||
rows: 1,
|
||
})),
|
||
],
|
||
};
|
||
|
||
return grid3;
|
||
},
|
||
[items]
|
||
);
|
||
|
||
const [tiles] = useReactiveState<Tile[]>(
|
||
(prevTiles) => {
|
||
// If React hasn't yet rendered the current generation of the layout, skip
|
||
// the update, because grid and slotRects will be out of sync
|
||
if (slotGridGeneration !== grid.generation) return prevTiles ?? [];
|
||
|
||
const slotCells = grid.cells.filter((c) => c?.slot) as Cell[];
|
||
return zipWith(slotCells, slotRects, (cell, rect) => ({
|
||
item: cell.item,
|
||
x: rect.x,
|
||
y: rect.y,
|
||
width: rect.width,
|
||
height: rect.height,
|
||
}));
|
||
},
|
||
[slotRects, grid, slotGridGeneration]
|
||
);
|
||
|
||
// Drag state is stored in a ref rather than component state, because we use
|
||
// react-spring's imperative API during gestures to improve responsiveness
|
||
const dragState = useRef<DragState | null>(null);
|
||
|
||
const [tileTransitions, springRef] = useTransition(
|
||
tiles,
|
||
() => ({
|
||
key: ({ item }: Tile) => item.id,
|
||
from: ({ x, y, width, height }: Tile) => ({
|
||
opacity: 0,
|
||
scale: 0,
|
||
shadow: 1,
|
||
zIndex: 1,
|
||
x,
|
||
y,
|
||
width,
|
||
height,
|
||
immediate: disableAnimations,
|
||
}),
|
||
enter: { opacity: 1, scale: 1, immediate: disableAnimations },
|
||
update: ({ item, x, y, width, height }: Tile) =>
|
||
item.id === dragState.current?.tileId
|
||
? {}
|
||
: {
|
||
x,
|
||
y,
|
||
width,
|
||
height,
|
||
immediate: disableAnimations,
|
||
},
|
||
leave: { opacity: 0, scale: 0, immediate: disableAnimations },
|
||
config: { mass: 0.7, tension: 252, friction: 25 },
|
||
}),
|
||
[tiles, disableAnimations]
|
||
// react-spring's types are bugged and can't infer the spring type
|
||
) as unknown as [TransitionFn<Tile, TileSpring>, SpringRef<TileSpring>];
|
||
|
||
const slotGridStyle = useMemo(() => {
|
||
const columnCount = 6;
|
||
|
||
const areas = new Array<(number | null)[]>(
|
||
Math.ceil(grid.cells.length / grid.columns)
|
||
);
|
||
for (let i = 0; i < areas.length; i++)
|
||
areas[i] = new Array<number | null>(grid.columns).fill(null);
|
||
|
||
let slotId = 0;
|
||
for (let i = 0; i < grid.cells.length; i++) {
|
||
const cell = grid.cells[i];
|
||
if (cell?.slot) {
|
||
const slotEnd = i + cell.columns - 1 + grid.columns * (cell.rows - 1);
|
||
forEachCellInArea(
|
||
i,
|
||
slotEnd,
|
||
grid,
|
||
(_c, j) => (areas[row(j, grid)][column(j, grid)] = slotId)
|
||
);
|
||
slotId++;
|
||
}
|
||
}
|
||
|
||
return {
|
||
gridTemplateAreas: areas
|
||
.map(
|
||
(row) =>
|
||
`'${row
|
||
.map((slotId) => (slotId === null ? "." : `s${slotId}`))
|
||
.join(" ")}'`
|
||
)
|
||
.join(" "),
|
||
gridTemplateColumns: `repeat(${columnCount}, 1fr)`,
|
||
};
|
||
}, [grid]);
|
||
|
||
const animateDraggedTile = (endOfGesture: boolean) => {
|
||
const { tileId, tileX, tileY, cursorX, cursorY } = dragState.current!;
|
||
const tile = tiles.find((t) => t.item.id === tileId)!;
|
||
|
||
springRef.start((_i, controller) => {
|
||
if ((controller.item as Tile).item.id === tileId) {
|
||
if (endOfGesture) {
|
||
return {
|
||
scale: 1,
|
||
zIndex: 1,
|
||
shadow: 1,
|
||
x: tile.x,
|
||
y: tile.y,
|
||
width: tile.width,
|
||
height: tile.height,
|
||
immediate: disableAnimations || ((key) => key === "zIndex"),
|
||
// Allow the tile's position to settle before pushing its
|
||
// z-index back down
|
||
delay: (key) => (key === "zIndex" ? 500 : 0),
|
||
};
|
||
} else {
|
||
return {
|
||
scale: 1.1,
|
||
zIndex: 2,
|
||
shadow: 15,
|
||
x: tileX,
|
||
y: tileY,
|
||
immediate:
|
||
disableAnimations ||
|
||
((key) => key === "zIndex" || key === "x" || key === "y"),
|
||
};
|
||
}
|
||
} else {
|
||
return {};
|
||
}
|
||
});
|
||
|
||
const overTile = tiles.find(
|
||
(t) =>
|
||
cursorX >= t.x &&
|
||
cursorX < t.x + t.width &&
|
||
cursorY >= t.y &&
|
||
cursorY < t.y + t.height
|
||
);
|
||
if (overTile !== undefined && overTile.item.id !== tileId) {
|
||
setGrid((g) => ({
|
||
...g,
|
||
cells: g.cells.map((c) => {
|
||
if (c?.item === overTile.item) return { ...c, item: tile.item };
|
||
if (c?.item === tile.item) return { ...c, item: overTile.item };
|
||
return c;
|
||
}),
|
||
}));
|
||
}
|
||
};
|
||
|
||
const onTileDrag = (
|
||
tileId: string,
|
||
{
|
||
tap,
|
||
initial: [initialX, initialY],
|
||
delta: [dx, dy],
|
||
last,
|
||
}: Parameters<Handler<"drag", EventTypes["drag"]>>[0]
|
||
) => {
|
||
if (tap) {
|
||
setGrid((g) => cycleTileSize(tileId, g));
|
||
} else {
|
||
const tileSpring = springRef.current
|
||
.find((c) => (c.item as Tile).item.id === tileId)!
|
||
.get();
|
||
|
||
if (dragState.current === null) {
|
||
dragState.current = {
|
||
tileId,
|
||
tileX: tileSpring.x,
|
||
tileY: tileSpring.y,
|
||
cursorX: initialX - gridBounds.x,
|
||
cursorY: initialY - gridBounds.y + scrollOffset.current,
|
||
};
|
||
}
|
||
dragState.current.tileX += dx;
|
||
dragState.current.tileY += dy;
|
||
dragState.current.cursorX += dx;
|
||
dragState.current.cursorY += dy;
|
||
|
||
animateDraggedTile(last);
|
||
|
||
if (last) dragState.current = null;
|
||
}
|
||
};
|
||
|
||
const onTileDragRef = useRef(onTileDrag);
|
||
onTileDragRef.current = onTileDrag;
|
||
|
||
const scrollOffset = useRef(0);
|
||
|
||
useScroll(
|
||
({ xy: [, y], delta: [, dy] }) => {
|
||
scrollOffset.current = y;
|
||
|
||
if (dragState.current !== null) {
|
||
dragState.current.tileY += dy;
|
||
dragState.current.cursorY += dy;
|
||
animateDraggedTile(false);
|
||
}
|
||
},
|
||
{ target: gridRef2 }
|
||
);
|
||
|
||
const slots = useMemo(() => {
|
||
const slots = new Array<ReactNode>(items.length);
|
||
for (let i = 0; i < items.length; i++)
|
||
slots[i] = (
|
||
<div className={styles.slot} key={i} style={{ gridArea: `s${i}` }} />
|
||
);
|
||
return slots;
|
||
}, [items.length]);
|
||
|
||
// Render nothing if the bounds are not yet known
|
||
if (gridBounds.width === 0) {
|
||
return <div ref={gridRef} className={styles.grid} />;
|
||
}
|
||
|
||
return (
|
||
<div ref={gridRef} className={styles.grid}>
|
||
<div
|
||
style={slotGridStyle}
|
||
ref={setSlotGrid}
|
||
className={styles.slotGrid}
|
||
data-generation={grid.generation}
|
||
>
|
||
{slots}
|
||
</div>
|
||
{tileTransitions((style, tile) =>
|
||
children({
|
||
...style,
|
||
key: tile.item.id,
|
||
targetWidth: tile.width,
|
||
targetHeight: tile.height,
|
||
item: tile.item,
|
||
onDragRef: onTileDragRef,
|
||
})
|
||
)}
|
||
</div>
|
||
);
|
||
};
|