367 lines
9.9 KiB
TypeScript
367 lines
9.9 KiB
TypeScript
/*
|
||
Copyright 2023 New Vector Ltd
|
||
|
||
Licensed under the Apache License, Version 2.0 (the "License");
|
||
you may not use this file except in compliance with the License.
|
||
You may obtain a copy of the License at
|
||
|
||
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
||
Unless required by applicable law or agreed to in writing, software
|
||
distributed under the License is distributed on an "AS IS" BASIS,
|
||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
See the License for the specific language governing permissions and
|
||
limitations under the License.
|
||
*/
|
||
|
||
import TinyQueue from "tinyqueue";
|
||
import { TileDescriptor } from "./TileDescriptor";
|
||
|
||
/**
|
||
* A 1×1 cell in a grid which belongs to a tile.
|
||
*/
|
||
export interface Cell {
|
||
/**
|
||
* The item displayed on the tile.
|
||
*/
|
||
item: TileDescriptor;
|
||
/**
|
||
* Whether this cell is the origin (top left corner) of the tile.
|
||
*/
|
||
origin: boolean;
|
||
/**
|
||
* The width, in columns, of the tile.
|
||
*/
|
||
columns: number;
|
||
/**
|
||
* The height, in rows, of the tile.
|
||
*/
|
||
rows: number;
|
||
}
|
||
|
||
export interface Grid {
|
||
columns: number;
|
||
/**
|
||
* The cells of the grid, in left-to-right top-to-bottom order.
|
||
* undefined = empty.
|
||
*/
|
||
cells: (Cell | undefined)[];
|
||
}
|
||
|
||
export function dijkstra(g: Grid): number[] {
|
||
const end = findLast1By1Index(g) ?? 0;
|
||
const endRow = row(end, g);
|
||
const endColumn = column(end, g);
|
||
|
||
const distances = new Array<number>(end + 1).fill(Infinity);
|
||
distances[end] = 0;
|
||
const edges = new Array<number | undefined>(end).fill(undefined);
|
||
const heap = new TinyQueue([end], (i) => distances[i]);
|
||
|
||
const visit = (curr: number, via: number) => {
|
||
const viaCell = g.cells[via];
|
||
const viaLargeTile =
|
||
viaCell !== undefined && (viaCell.rows > 1 || viaCell.columns > 1);
|
||
const distanceVia = distances[via] + (viaLargeTile ? 4 : 1);
|
||
|
||
if (distanceVia < distances[curr]) {
|
||
distances[curr] = distanceVia;
|
||
edges[curr] = via;
|
||
heap.push(curr);
|
||
}
|
||
};
|
||
|
||
while (heap.length > 0) {
|
||
const via = heap.pop()!;
|
||
const viaRow = row(via, g);
|
||
const viaColumn = column(via, g);
|
||
|
||
if (viaRow > 0) visit(via - g.columns, via);
|
||
if (viaColumn > 0) visit(via - 1, via);
|
||
if (viaColumn < (viaRow === endRow ? endColumn : g.columns - 1))
|
||
visit(via + 1, via);
|
||
if (
|
||
viaRow < endRow - 1 ||
|
||
(viaRow === endRow - 1 && viaColumn <= endColumn)
|
||
)
|
||
visit(via + g.columns, via);
|
||
}
|
||
|
||
return edges as number[];
|
||
}
|
||
|
||
function findLastIndex<T>(
|
||
array: T[],
|
||
predicate: (item: T) => boolean
|
||
): number | null {
|
||
for (let i = array.length - 1; i >= 0; i--) {
|
||
if (predicate(array[i])) return i;
|
||
}
|
||
|
||
return null;
|
||
}
|
||
|
||
const findLast1By1Index = (g: Grid): number | null =>
|
||
findLastIndex(g.cells, (c) => c?.rows === 1 && c?.columns === 1);
|
||
|
||
export function row(index: number, g: Grid): number {
|
||
return Math.floor(index / g.columns);
|
||
}
|
||
|
||
export function column(index: number, g: Grid): number {
|
||
return ((index % g.columns) + g.columns) % g.columns;
|
||
}
|
||
|
||
function inArea(index: number, start: number, end: number, g: Grid): boolean {
|
||
const indexColumn = column(index, g);
|
||
const indexRow = row(index, g);
|
||
return (
|
||
indexRow >= row(start, g) &&
|
||
indexRow <= row(end, g) &&
|
||
indexColumn >= column(start, g) &&
|
||
indexColumn <= column(end, g)
|
||
);
|
||
}
|
||
|
||
function* cellsInArea(
|
||
start: number,
|
||
end: number,
|
||
g: Grid
|
||
): Generator<number, void, unknown> {
|
||
const startColumn = column(start, g);
|
||
const endColumn = column(end, g);
|
||
for (
|
||
let i = start;
|
||
i <= end;
|
||
i =
|
||
column(i, g) === endColumn
|
||
? i + g.columns + startColumn - endColumn
|
||
: i + 1
|
||
)
|
||
yield i;
|
||
}
|
||
|
||
export function forEachCellInArea(
|
||
start: number,
|
||
end: number,
|
||
g: Grid,
|
||
fn: (c: Cell | undefined, i: number) => void
|
||
): void {
|
||
for (const i of cellsInArea(start, end, g)) fn(g.cells[i], i);
|
||
}
|
||
|
||
function allCellsInArea(
|
||
start: number,
|
||
end: number,
|
||
g: Grid,
|
||
fn: (c: Cell | undefined, i: number) => boolean
|
||
): boolean {
|
||
for (const i of cellsInArea(start, end, g)) {
|
||
if (!fn(g.cells[i], i)) return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
const areaEnd = (
|
||
start: number,
|
||
columns: number,
|
||
rows: number,
|
||
g: Grid
|
||
): number => start + columns - 1 + g.columns * (rows - 1);
|
||
|
||
/**
|
||
* Gets the index of the next gap in the grid that should be backfilled by 1×1
|
||
* tiles.
|
||
*/
|
||
function getNextGap(g: Grid): number | null {
|
||
const last1By1Index = findLast1By1Index(g);
|
||
if (last1By1Index === null) return null;
|
||
|
||
for (let i = 0; i < last1By1Index; i++) {
|
||
// To make the backfilling process look natural when there are multiple
|
||
// gaps, we actually scan each row from right to left
|
||
const j =
|
||
(row(i, g) === row(last1By1Index, g)
|
||
? last1By1Index
|
||
: (row(i, g) + 1) * g.columns) -
|
||
1 -
|
||
column(i, g);
|
||
|
||
if (g.cells[j] === undefined) return j;
|
||
}
|
||
|
||
return null;
|
||
}
|
||
|
||
export function fillGaps(g: Grid): Grid {
|
||
const result: Grid = { ...g, cells: [...g.cells] };
|
||
let gap = getNextGap(result);
|
||
|
||
if (gap !== null) {
|
||
const pathToEnd = dijkstra(result);
|
||
|
||
do {
|
||
let filled = false;
|
||
let to = gap;
|
||
let from: number | undefined = pathToEnd[gap];
|
||
|
||
// First, attempt to fill the gap by moving 1×1 tiles backwards from the
|
||
// end of the grid along a set path
|
||
while (from !== undefined) {
|
||
const toCell = result.cells[to];
|
||
const fromCell = result.cells[from];
|
||
|
||
// Skip over large tiles
|
||
if (toCell !== undefined) {
|
||
to = pathToEnd[to];
|
||
// Skip over large tiles. Also, we might run into gaps along the path
|
||
// created during the filling of previous gaps. Skip over those too;
|
||
// they'll be picked up on the next iteration of the outer loop.
|
||
} else if (
|
||
fromCell === undefined ||
|
||
fromCell.rows > 1 ||
|
||
fromCell.columns > 1
|
||
) {
|
||
from = pathToEnd[from];
|
||
} else {
|
||
result.cells[to] = result.cells[from];
|
||
result.cells[from] = undefined;
|
||
filled = true;
|
||
to = pathToEnd[to];
|
||
from = pathToEnd[from];
|
||
}
|
||
}
|
||
|
||
// In case the path approach failed, fall back to taking the very last 1×1
|
||
// tile, and just dropping it into place
|
||
if (!filled) {
|
||
const last1By1Index = findLast1By1Index(result)!;
|
||
result.cells[gap] = result.cells[last1By1Index];
|
||
result.cells[last1By1Index] = undefined;
|
||
}
|
||
|
||
gap = getNextGap(result);
|
||
} while (gap !== null);
|
||
}
|
||
|
||
// TODO: If there are any large tiles on the last row, shuffle them back
|
||
// upwards into a full row
|
||
|
||
// Shrink the array to remove trailing gaps
|
||
const finalLength =
|
||
(findLastIndex(result.cells, (c) => c !== undefined) ?? -1) + 1;
|
||
if (finalLength < result.cells.length)
|
||
result.cells = result.cells.slice(0, finalLength);
|
||
|
||
return result;
|
||
}
|
||
|
||
export function appendItems(items: TileDescriptor[], g: Grid): Grid {
|
||
return {
|
||
...g,
|
||
cells: [
|
||
...g.cells,
|
||
...items.map((i) => ({
|
||
item: i,
|
||
origin: true,
|
||
columns: 1,
|
||
rows: 1,
|
||
})),
|
||
],
|
||
};
|
||
}
|
||
|
||
export function cycleTileSize(tileId: string, g: Grid): Grid {
|
||
const from = g.cells.findIndex((c) => c?.item.id === tileId);
|
||
if (from === -1) return g; // Tile removed, no change
|
||
const fromWidth = g.cells[from]!.columns;
|
||
const fromHeight = g.cells[from]!.rows;
|
||
const fromEnd = areaEnd(from, fromWidth, fromHeight, g);
|
||
|
||
const [toWidth, toHeight] =
|
||
fromWidth === 1 && fromHeight === 1
|
||
? [Math.min(3, Math.max(2, g.columns - 1)), 2]
|
||
: [1, 1];
|
||
const newRows = Math.max(
|
||
0,
|
||
Math.ceil((toWidth * toHeight - fromWidth * fromHeight) / g.columns)
|
||
);
|
||
|
||
const candidateWidth = toWidth;
|
||
const candidateHeight = toHeight - newRows;
|
||
|
||
const gappyGrid: Grid = {
|
||
...g,
|
||
cells: new Array(g.cells.length + newRows * g.columns),
|
||
};
|
||
|
||
const nextScanLocations = new Set<number>([from]);
|
||
const scanColumnOffset = Math.floor((toWidth - 1) / 2);
|
||
const scanRowOffset = Math.floor((toHeight - 1) / 2);
|
||
const rows = row(g.cells.length - 1, g) + 1;
|
||
let to: number | null = null;
|
||
|
||
const displaceable = (c: Cell | undefined, i: number): boolean =>
|
||
c === undefined ||
|
||
(c.columns === 1 && c.rows === 1) ||
|
||
inArea(i, from, fromEnd, g);
|
||
|
||
for (const scanLocation of nextScanLocations) {
|
||
const start = scanLocation - scanColumnOffset - g.columns * scanRowOffset;
|
||
const end = areaEnd(start, candidateWidth, candidateHeight, g);
|
||
const startColumn = column(start, g);
|
||
const startRow = row(start, g);
|
||
const endColumn = column(end, g);
|
||
|
||
if (
|
||
start >= 0 &&
|
||
end < gappyGrid.cells.length &&
|
||
endColumn - startColumn + 1 === candidateWidth
|
||
) {
|
||
if (allCellsInArea(start, end, g, displaceable)) {
|
||
to = start;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (startColumn > 0) nextScanLocations.add(scanLocation - 1);
|
||
if (endColumn < g.columns - 1) nextScanLocations.add(scanLocation + 1);
|
||
if (startRow > 0) nextScanLocations.add(scanLocation - g.columns);
|
||
if (startRow <= rows) nextScanLocations.add(scanLocation + g.columns);
|
||
}
|
||
|
||
// TODO: Don't give up on placing the tile yet
|
||
if (to === null) return g;
|
||
|
||
const toRow = row(to, g);
|
||
|
||
g.cells.forEach((c, src) => {
|
||
if (c?.origin && c.item.id !== tileId) {
|
||
const offset =
|
||
row(src, g) > toRow + candidateHeight - 1 ? g.columns * newRows : 0;
|
||
forEachCellInArea(src, areaEnd(src, c.columns, c.rows, g), g, (c, i) => {
|
||
gappyGrid.cells[i + offset] = c;
|
||
});
|
||
}
|
||
});
|
||
|
||
const displacedTiles: Cell[] = [];
|
||
const toEnd = areaEnd(to, toWidth, toHeight, g);
|
||
forEachCellInArea(to, toEnd, gappyGrid, (c, i) => {
|
||
if (c !== undefined) displacedTiles.push(c);
|
||
gappyGrid.cells[i] = {
|
||
item: g.cells[from]!.item,
|
||
origin: i === to,
|
||
columns: toWidth,
|
||
rows: toHeight,
|
||
};
|
||
});
|
||
|
||
for (let i = 0; displacedTiles.length > 0; i++) {
|
||
if (gappyGrid.cells[i] === undefined)
|
||
gappyGrid.cells[i] = displacedTiles.shift();
|
||
}
|
||
|
||
return fillGaps(gappyGrid);
|
||
}
|